Java基础学习14:【线程、同步、线程状态】

  • A+
所属分类:Java Java基础

主要内容

  • 线程
  • 同步
  • 线程状态

教学目标

  • [ ] 能够描述Java中多线程运行原理
  • [ ] 能够使用继承类的方式创建多线程
  • [ ] 能够使用实现接口的方式创建多线程
  • [ ] 能够说出实现接口方式的好处
  • [ ] 能够解释安全问题的出现的原因
  • [ ] 能够使用同步代码块解决线程安全问题
  • [ ] 能够使用同步方法解决线程安全问题
  • [ ] 能够说出线程6个状态的名称
  • [ ] 能够理解等待唤醒案例

第一章 多线程

1.1 多线程原理

昨天的时候我们已经写过一版多线程的代码,很多同学对原理不是很清楚,那么我们今天先画个多线程执行时序图来体现一下多线程程序的执行流程。

代码如下:

自定义线程类:

public class MyThread extends Thread{
    /*
     * 利用继承中的特点 
     *   将线程名称传递  进行设置
     */
    public MyThread(String name){
        super(name);
    }
    /*
     * 重写run方法
     *  定义线程要执行的代码
     */
    public void run(){      
        for (int i = 0; i < 20; i++) {
            //getName()方法 来自父亲
            System.out.println(getName()+i);
        }
    }
}

测试类:

public class Demo {
    public static void main(String[] args) {
        System.out.println("这里是main线程");
        MyThread mt = new MyThread("小强");       
        mt.start();//开启了一个新的线程
        for (int i = 0; i < 20; i++) {
            System.out.println("旺财:"+i);
        }
    }
}

流程图:

Java基础学习14:【线程、同步、线程状态】

程序启动运行main时候,java虚拟机启动一个进程,主线程main在main()调用时候被创建。随着调用mt的对象的start方法,另外一个新的线程也启动了,这样,整个应用就在多线程下运行。

通过这张图我们可以很清晰的看到多线程的执行流程,那么为什么可以完成并发执行呢?我们再来讲一讲原理。

多线程执行时,到底在内存中是如何运行的呢?以上个程序为例,进行图解说明:

多线程执行时,在栈内存中,其实每一个执行线程都有一片自己所属的栈内存空间。进行方法的压栈和弹栈。

Java基础学习14:【线程、同步、线程状态】

当执行线程的任务结束了,线程自动在栈内存中释放了。但是当所有的执行线程都结束了,那么进程就结束了。

1.2 Thread类

在上一天内容中我们已经可以完成最基本的线程开启,那么在我们完成操作过程中用到了java.lang.Thread类,API中该类中定义了有关线程的一些方法,具体如下:

构造方法:

  • public Thread():分配一个新的线程对象。
  • public Thread(String name):分配一个指定名字的新的线程对象。
  • public Thread(Runnable target):分配一个带有指定目标新的线程对象。
  • public Thread(Runnable target,String name):分配一个带有指定目标新的线程对象并指定名字。

常用方法:

  • public String getName():获取当前线程名称。
  • public void start():导致此线程开始执行; Java虚拟机调用此线程的run方法。
  • public void run():此线程要执行的任务在此处定义代码。
  • public static void sleep(long millis):使当前正在执行的线程以指定的毫秒数暂停(暂时停止执行)。
  • public static Thread currentThread():返回对当前正在执行的线程对象的引用。

翻阅API后得知创建线程的方式总共有两种,一种是继承Thread类方式,一种是实现Runnable接口方式,方式一我们上一天已经完成,接下来讲解方式二实现的方式。

1.3 实现接口方式

采用java.lang.Runnable也是非常常见的一种,我们只需要重写run方法即可。

步骤如下:

  1. 定义Runnable接口的实现类,并重写该接口的run()方法,该run()方法的方法体同样是该线程的线程执行体。
  2. 创建Runnable实现类的实例,并以此实例作为Thread的target来创建Thread对象,该Thread对象才是真正的线程对象。
  3. 调用线程对象的start()方法来启动线程。

代码如下:

public class MyRunnable implements Runnable{
    @Override
    public void run() {
        for (int i = 0; i < 20; i++) {
            System.out.println(Thread.currentThread().getName()+" "+i);
        }
    }
}

public class Demo {
    public static void main(String[] args) {
        //创建自定义类对象  线程任务对象
        MyRunnable mr = new MyRunnable();
        //创建线程对象
        Thread t = new Thread(mr, "小强");
        t.start();
        for (int i = 0; i < 20; i++) {
            System.out.println("旺财 " + i);
        }
    }
}

通过实现Runnable接口,使得该类有了多线程类的特征。run()方法是多线程程序的一个执行目标。所有的多线程代码都在run方法里面。Thread类实际上也是实现了Runnable接口的类。

在启动的多线程的时候,需要先通过Thread类的构造方法Thread(Runnable target) 构造出对象,然后调用Thread对象的start()方法来运行多线程代码。

实际上所有的多线程代码都是通过运行Thread的start()方法来运行的。因此,不管是继承Thread类还是实现Runnable接口来实现多线程,最终还是通过Thread的对象的API来控制线程的,熟悉Thread类的API是进行多线程编程的基础。

tips:Runnable对象仅仅作为Thread对象的target,Runnable实现类里包含的run()方法仅作为线程执行体。而实际的线程对象依然是Thread实例,只是该Thread线程负责执行其target的run()方法。

Thread和Runnable的区别

如果一个类继承Thread,则不适合资源共享。但是如果实现了Runable接口的话,则很容易的实现资源共享。

总结:

实现Runnable接口比继承Thread类所具有的优势:

  1. 适合多个相同的程序代码的线程去共享同一个资源。
  2. 可以避免java中的单继承的局限性。
  3. 增加程序的健壮性,实现解耦操作,代码可以被多个线程共享,代码和线程独立。
  4. 线程池只能放入实现Runable或Callable类线程,不能直接放入继承Thread的类。

1.4 匿名内部类方式

使用线程的内匿名内部类方式,可以方便的实现每个线程执行不同的线程任务操作。

使用匿名内部类的方式实现Runnable接口,重新Runnable接口中的run方法:

public class NoNameInnerClassThread {
       public static void main(String[] args) {        
//        new Runnable(){
//            public void run(){
//                for (int i = 0; i < 20; i++) {
//                    System.out.println("张宇:"+i);
//                }
//            }  
//        }; //---这个整体  相当于new MyRunnable()
        Runnable r = new Runnable(){
                     public void run(){
                         for (int i = 0; i < 20; i++) {
                             System.out.println("张宇:"+i);
                         }
                     }};
        new Thread(r).start();

        for (int i = 0; i < 20; i++) {
              System.out.println("费玉清:"+i);
        }
       }
}

第二章 线程安全

2.1 线程安全

如果有多个线程在同时运行,而这些线程可能会同时运行这段代码。程序每次运行结果和单线程运行的结果是一样的,而且其他的变量的值也和预期的是一样的,就是线程安全的。

我们通过一个案例,演示线程的安全问题:

电影院要卖票,我们模拟电影院的卖票过程。假设要播放的电影是 “葫芦娃大战奥特曼”,本次电影的座位共100个(本场电影只能卖100张票)。

我们来模拟电影院的售票窗口,实现多个窗口同时卖 “葫芦娃大战奥特曼”这场电影票(多个窗口一起卖这100张票)

需要窗口,采用线程对象来模拟;需要票,Runnable接口子类来模拟

模拟票:

public class Ticket implements Runnable {
    private int ticket = 100;
    /*
     * 执行卖票操作
     */
    @Override
    public void run() {
        //每个窗口卖票的操作 
        //窗口 永远开启 
        while (true) {
            if (ticket > 0) {//有票 可以卖
                //出票操作
                //使用sleep模拟一下出票时间 
                try {
                    Thread.sleep(100);
                } catch (InterruptedException e) {
                    // TODO Auto-generated catch block
                    e.printStackTrace();
                }
                //获取当前线程对象的名字 
                String name = Thread.currentThread().getName();
                System.out.println(name + "正在卖:" + ticket--);
            }
        }
    }
}

测试类:

public class Demo {
    public static void main(String[] args) {
        //创建线程任务对象
        Ticket ticket = new Ticket();
        //创建三个窗口对象
        Thread t1 = new Thread(ticket, "窗口1");
        Thread t2 = new Thread(ticket, "窗口2");
        Thread t3 = new Thread(ticket, "窗口3");
        //同时卖票
        t1.start();
        t2.start();
        t3.start();
    }
}

结果中有一部分这样现象:

Java基础学习14:【线程、同步、线程状态】

发现程序出现了两个问题:

  1. 相同的票数,比如5这张票被卖了两回。
  2. 不存在的票,比如0票与-1票,是不存在的。

这种问题,几个窗口(线程)票数不同步了,这种问题称为线程不安全。

线程安全问题都是由全局变量及静态变量引起的。若每个线程中对全局变量、静态变量只有读操作,而无写操作,一般来说,这个全局变量是线程安全的;若有多个线程同时执行写操作,一般都需要考虑线程同步,否则的话就可能影响线程安全。

2.2 线程同步

当我们使用多个线程访问同一资源的时候,且多个线程中对资源有写的操作,就容易出现线程安全问题。

要解决上述多线程并发访问一个资源的安全性问题:也就是解决重复票与不存在票问题,Java中提供了同步机制(synchronized)来解决。

根据案例简述:

窗口1线程进入操作的时候,窗口2和窗口3线程只能在外等着,窗口1操作结束,窗口1和窗口2和窗口3才有机会进入代码去执行。也就是说在某个线程修改共享资源的时候,其他线程不能修改该资源,等待修改完毕同步之后,才能去抢夺CPU资源,完成对应的操作,保证了数据的同步性,解决了线程不安全的现象。

为了保证每个线程都能正常执行原子操作,Java引入了线程同步机制。

那么怎么去使用呢?有三种方式完成同步操作:

  1. 同步代码块。
  2. 同步方法。
  3. 锁机制。

2.3 同步代码块

  • 同步代码块synchronized关键字可以用于方法中的某个区块中,表示只对这个区块的资源实行互斥访问。

格式:

synchronized(同步锁){
     需要同步操作的代码
}

同步锁:

对象的同步锁只是一个概念,可以想象为在对象上标记了一个锁.

  1. 锁对象 可以是任意类型。
  2. 多个线程对象 要使用同一把锁。

注意:在任何时候,最多允许一个线程拥有同步锁,谁拿到锁就进入代码块,其他的线程只能在外等着(BLOCKED)。

使用同步代码块解决代码:

public class Ticket implements Runnable{
    private int ticket = 100;
    Object lock = new Object();
    /*
     * 执行卖票操作
     */
    @Override
    public void run() {
        //每个窗口卖票的操作 
        //窗口 永远开启 
        while(true){
            synchronized (lock) {
                if(ticket>0){//有票 可以卖
                    //出票操作
                    //使用sleep模拟一下出票时间 
                    try {
                        Thread.sleep(50);
                    } catch (InterruptedException e) {
                        // TODO Auto-generated catch block
                        e.printStackTrace();
                    }
                    //获取当前线程对象的名字 
                    String name = Thread.currentThread().getName();
                    System.out.println(name+"正在卖:"+ticket--);
                }
            }
        }
    }
}

当使用了同步代码块后,上述的线程的安全问题,解决了。

2.4 同步方法

  • 同步方法:使用synchronized修饰的方法,就叫做同步方法,保证A线程执行该方法的时候,其他线程只能在方法外等着。

格式:

public synchronized void method(){
       可能会产生线程安全问题的代码
}

同步锁是谁?

对于非static方法,同步锁就是this。

对于static方法,我们使用当前方法所在类的字节码对象(类名.class)。

使用同步方法代码如下:

public class Ticket implements Runnable{
    private int ticket = 100;
    /*
     * 执行卖票操作
     */
    @Override
    public void run() {
        //每个窗口卖票的操作 
        //窗口 永远开启 
        while(true){
            sellTicket();
        }
    }
    /*
     * 锁对象 是 谁调用这个方法 就是谁 
     *   隐含 锁对象 就是  this
     *    
     */
    public synchronized void sellTicket(){
        if(ticket>0){//有票 可以卖    
            //出票操作
            //使用sleep模拟一下出票时间 
            try {
                  Thread.sleep(100);
            } catch (InterruptedException e) {
                  // TODO Auto-generated catch block
                  e.printStackTrace();
            }
            //获取当前线程对象的名字 
            String name = Thread.currentThread().getName();
            System.out.println(name+"正在卖:"+ticket--);
        }
    }
}

2.5 Lock锁

java.util.concurrent.locks.Lock机制提供了比synchronized代码块和synchronized方法更广泛的锁定操作,同步代码块/同步方法具有的功能Lock都有,除此之外更强大,更体现面向对象。

Lock锁也称同步锁,加锁与释放锁方法化了,如下:

  • public void lock():加同步锁。
  • public void unlock():释放同步锁。

使用如下:

public class Ticket implements Runnable{
    private int ticket = 100;
    Lock lock = new ReentrantLock();
    /*
     * 执行卖票操作
     */
    @Override
    public void run() {
        //每个窗口卖票的操作 
        //窗口 永远开启 
        while(true){
            lock.lock();
            if(ticket>0){//有票 可以卖
                //出票操作 
                //使用sleep模拟一下出票时间 
                try {
                    Thread.sleep(50);
                } catch (InterruptedException e) {
                    // TODO Auto-generated catch block
                    e.printStackTrace();
                }
                //获取当前线程对象的名字 
                String name = Thread.currentThread().getName();
                System.out.println(name+"正在卖:"+ticket--);
            }
            lock.unlock();
        }
    }
}

第三章 线程状态

3.1 线程状态概述

当线程被创建并启动以后,它既不是一启动就进入了执行状态,也不是一直处于执行状态。在线程的生命周期中,有几种状态呢?在API中java.lang.Thread.State这个枚举中给出了六种线程状态:

这里先列出各个线程状态发生的条件,下面将会对每种状态进行详细解析

Java基础学习14:【线程、同步、线程状态】

Java基础学习14:【线程、同步、线程状态】

我们不需要去研究这几种状态的实现原理,我们只需知道在做线程操作中存在这样的状态。那我们怎么去理解这几个状态呢,新建与被终止还是很容易理解的,我们就研究一下线程从Runnable(可运行)状态与非运行状态之间的转换问题。

3.2 睡眠sleep方法

我们看到状态中有一个状态叫做计时等待,可以通过Thread类的方法来进行演示.

public static void sleep(long time) 让当前线程进入到睡眠状态,到毫秒后自动醒来继续执行

public class Test{
  public static void main(String[] args){
    for(int i = 1;i<=5;i++){
          Thread.sleep(1000);
        System.out.println(i)   
    } 
  }
}

这时我们发现主线程执行到sleep方法会休眠1秒后再继续执行。

3.3 等待和唤醒

Object类的方法

public void wait() : 让当前线程进入到等待状态 此方法必须锁对象调用.

public class Demo1_wait {
    public static void main(String[] args) throws InterruptedException {
       // 步骤1 : 子线程开启,进入无限等待状态, 没有被唤醒,无法继续运行.
        new Thread(() -> {
            try {
                System.out.println("begin wait ....");
                synchronized ("") {
                    "".wait();
                }
                System.out.println("over");
            } catch (Exception e) {
            }
        }).start();
    }

public void notify() : 唤醒当前锁对象上等待状态的线程 此方法必须锁对象调用.

public class Demo2_notify {
    public static void main(String[] args) throws InterruptedException {
       // 步骤1 : 子线程开启,进入无限等待状态, 没有被唤醒,无法继续运行.
        new Thread(() -> {
            try {
                System.out.println("begin wait ....");
                synchronized ("") {
                    "".wait();
                }
                System.out.println("over");
            } catch (Exception e) {
            }
        }).start();
        //步骤2:  加入如下代码后, 3秒后,会执行notify方法, 唤醒wait中线程.
        Thread.sleep(3000);
        new Thread(() -> {
            try {
                synchronized ("") {
                    System.out.println("唤醒");
                    "".notify();
                }
            } catch (Exception e) {
            }
        }).start();
    }
}

3.4 等待唤醒案例(包子铺卖包子)

定义一个集合,包子铺线程完成生产包子,包子添加到集合中;吃货线程完成购买包子,包子从集合中移除。

  • 1. 当包子没有时(包子状态为false),吃货线程等待.
  • 2. 包子铺线程生产包子(即包子状态为true),并通知吃货线程(解除吃货的等待状态)

代码示例:

生成包子类:

public class BaoZiPu extends Thread{
    private List<String> list ;
    public BaoZiPu(String name,ArrayList<String> list){
        super(name);
        this.list = list;
    }
    @Override
    public void run() {
            int i = 0; 
            while(true){
                    //list作为锁对象
                    synchronized (list){
                        if(list.size()>0){
                            //存元素的线程进入到等待状态
                            try {
                                list.wait();
                            } catch (InterruptedException e) {
                                e.printStackTrace();
                            }
                        }
                        //如果线程没进入到等待状态 说明集合中没有元素
                        //向集合中添加元素
                        list.add("包子"+i++);
                        System.out.println(list);
                        //集合中已经有元素了 唤醒获取元素的线程
                        list.notify();
                    }
                }
            }
    }
}

消费包子类:

public class ChiHuo extends Thread {
    private List<String> list ;
    public ChiHuo(String name,ArrayList<String> list){
        super(name);
        this.list = list;
    }
    @Override
    public void run() {
             //为了能看到效果 写个死循环
                while(true){
                    //由于使用的同一个集合 list作为锁对象
                    synchronized (list){
                        //如果集合中没有元素 获取元素的线程进入到等待状态
                        if(list.size()==0){
                            try {
                                list.wait();
                            } catch (InterruptedException e) {
                                e.printStackTrace();
                            }
                        }
                        //如果集合中有元素 则获取元素的线程获取元素(删除)
                        list.remove(0);
                        //打印集合 集合中没有元素了
                        System.out.println(list);
                        //集合中已经没有元素 则唤醒添加元素的线程 向集合中添加元素
                        list.notify();
                    }
                }
            }
    }
}

测试类:

public class Demo {
    public static void main(String[] args) {
        //等待唤醒案例
        List<String> list = new ArrayList<>();
        // 创建线程对象        
         BaoZiPu bzp = new BaoZiPu("包子铺",list);
        ChiHuo ch = new ChiHuo("吃货",list);
        // 开启线程
        bzp.start();
        ch.start();
    }
}
  • 资源分享QQ群
  • weinxin
  • 官方微信公众号
  • weinxin
沙海
C语言郝斌老师教程
Java图书管理系统
一个Java基础入门的教程视频
Linux服务器网站环境安装

发表评论

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen: